ОБЩИЕ СВЕДЕНИЯ О ИЗОЛЯЦИОННЫХ МАТЕРИАЛАХ: - ИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ - - Справочник ремонт электродвигателей
ГлавнаяРегистрацияВход
Среда, 08.05.2024, 04:58
  Справочник ремонт электродвигателей Приветствую Вас Гость | RSS

  +38 062 207 47 71; +38 062 207 48 71; 
 +38 095 217 47 17; +38 050 527 02 58;
+38 071 352 55 95; +38 071 352 56 06
РЕМОНТ ЭЛЕКТРОДВИГАТЕЛЕЙ ДОНЕЦК
 
 
» » » [ Добавить статью ]

ОБЩИЕ СВЕДЕНИЯ О ИЗОЛЯЦИОННЫХ МАТЕРИАЛАХ:


ОБЩИЕ СВЕДЕНИЯ О ИЗОЛЯЦИОННЫХ МАТЕРИАЛАХ.

Изоляционные материалы, применяемые для изоляции электрических машин, можно разделить на несколько групп: синтетические; материалы, изготовляемые на основе слюды; стекловолокнистые, т. е. сделанные из стеклянных волокон; и материалы, основой которых служат целлюлоза и хлопчатобумажные волокна. В некоторых конструкциях для изоляции применяются картоны и мате¬риалы, получаемые из асбеста; пряжи, ткани, бумаги.
Основными материалами для изоляции обмоток машин низкого (до 660 В) напряжения являются синтетические: различные полиэтилентерафталатные (ПЭТФ) пленки типа лавсан, полиамидные бумаги, картоны и др.

Пленки имеют малую толщину (0,05—0,06 мм) и большую электрическую прочность. Их применяют в сочетании с подложками из бумаги или картона, улучшающими механические свойства изоляции. При этом электрическая прочность и нагревостойкость такого композиционного материала, как, например, пленкоэлектрокартон, определяются свойствами самой пленки и подложки.

Для изоляции обмоток высоковольтных электрических машин с номинальным напряжением 3000 В и выше применяют изоляционные материалы на основе слюды. Слюда — минерал. Она встречается в природе в виде кристаллов, которые легко расщепляются на пластинки. Тонкие пластинки — лепестки толщи¬ной менее сотой доли миллиметра называют щепаной слюдой. Склеивая лепестки слюды, получают различные электроизоляционные материалы — миканиты. Для увеличения их механической прочности лепестки слюды в некоторых материалах наклеивают на подложку из бумаги или стеклоткани. Подложки предохраняют слюдяной слой от расслаивания при изгибе материала. В зависимости от сорта слюды, способов изготовления, клеящего лака, наличия или отсутствия подложек различают несколько сортов миканита.

Твердые миканиты изготавливают без подложек, горячим прессованием пластинок слюды с термореактивным связующим. Они применяются для получения плоских, не подвергающихся изгибам изоляционных прокладок и имеют большую механическую прочность. К твердым миканитам относится, например, коллекторный, из которого изготавливают прокладки для изоляции коллекторных пластин (ламелей) друг от друга.

Формовочные миканиты в отличие от твердых после изготовления сохраняют способность принимать ту или иную форму при прессовании в нагретом со¬стоянии и сохранять ее после охлаждения. Они применяются в основном для изоляции коллекторов (фигурные коллекторные манжеты), различных втулок, каркасов катушек и других фасонных изоляционных деталей. К особой разно¬видности формовочного миканита относится микафолий — тонкий листовой материал, состоящий из пластинок слюды, наклеенных на подложку из бумаги или стеклоткани (стекломикафолий). Он используется для изготовления твердой гильзовой изоляции обмоток. Микафолий с бумажной подложкой относится к классу нагревостойкости В. Стекломикафолий в зависимости от связующего состава может быть использован в изоляции классов В, Р или Н.

Гибкие миканиты отличаются от твердых и формовочных гибкостью при нормальной температуре, которую сохраняют после нагрева и охлаждения. Они применяются для изоляции различных частей обмоток в пазовой и лобовой частях, прокладок и т. п. Разновидностью гибкого миканита является микалента — ленточный материал из склеенных пластинок слюды с двухсторонней подлож¬кой из микалентной бумаги или стеклоленты (стекломикалента). Толщина микалент 0,13 или 0,17 мм. Их применяют главным образом для изоляции обмоток высоковольтных машин. В зависимости от клеящего состава и материала подло¬жек микаленты относятся к классам нагревостойкости В, Р или Н. Микалента поступает свернутой в ролики и упакованной в плотно закрытые жестяные коробки. Вынутая из коробки микалента должна быть сразу же использована, так как на воздухе она быстро пересыхает и становится непригодной.

Изготовление материалов на основе щепаной слюды — чрезвычайно трудоемкий процесс и до сих пор не механизированный, так как требуется предварительное расщепление кристаллов слюды на пластинки (отсюда название — щепаная слюда), их калибровка и равномерная наклейка по слоям на подложку.

В настоящее время применяют материалы, в которых используются не пластинки слюды, а ее мелкие чешуйки, полученные механическим раздроблением кристаллов. Из чешуек изготавливают слюдинитовую бумагу, которая служит основой для ряда изоляционных материалов, аналогичных миканитам. С помощью связующих материалов и подложек из стеклоткани получают коллектор¬ный и формовочный слюдиниты, гибкие слюдиниты и стеклослюдиниты, слюди-нитофолий и стеклослюдинитофолий, слюдинитовые и стеклослюденитовые ленты и другие материалы, вполне заменяющие миканиты. В то же время они намного дешевле и технологичнее, чем изоляционные материалы на основе щепаной слюды.

Из более крупных чешуек слюды изготавливают слюдопластовые материа¬лы, аналогичные слюдинитовым, но имеющим более высокие механические свойства (коллекторный, формовочный прокладочный слюдопласт, слюдопластофолий, слюдопластовые ленты и т. п.). Эти материалы не уступают по своим электрическим свойствам соответствующим сортам миканитов, но превосходят их по гибкости, поэтому широко используются в современных изоляционных конструкциях.

Изоляционные материалы, изготовленные из стеклянного волокна, — стеклоленты и стеклоткани, обладают высокой нагревостойкостью и большой проч¬ностью на разрыв, но они не стойки к истиранию и повреждаются при много¬кратных изгибах. Их используют как вспомогательные при изолировании обмо¬ток, а также в качестве подложек для изготовления стекломиканитов и композиционных материалов на основе слюдинитов, например стеклослюдинита. Пропитка лаком повышает их механическую прочность, но снижает нагревостойкость, так как сами стекловолокнистые материалы имеют большую нагрево-стойкость, чем пропитывающие лаки.
Среди стекловолокнистых материалов следует выделить стеклоленты из нетканого стекловолокна, имеющие очень большую прочность на разрыв. Их используют для бандажирования лобовых частей обмоток, расположенных на роторах, вместо ранее применявшейся для этой цели стальной бандажной проволоки.

Из целлюлозы делают различные бумаги и электрокартон, а из хлопчатобумажной пряжи — полотна и ленты. Электрическая прочность этих материалов невелика, но они дешевы, легко изгибаются и имеют сравнительно большую механическую прочность. Их применяют для механической защиты других, менее прочных изоляционных материалов и в качестве прокладок. По нагревостойкости они относятся к классу У. Пропитка лаком повышает их нагревостойкость до класса А. Пропитанные лаком хлопчатобумажные ткани носят название лакотканей. Раньше их широко применяли в обмотках классов нагревостойкости изоляции А. В изоляции современных машин вместо хлопчатобумажных лент и тканей почти всегда применяют стеклоленты и стеклоткани.

Изоляционные материалы на основе асбеста обладают высокой нагревостойкостью и механической прочностью, но в электрических машинах находят ограниченное применение из-за их низкой теплопроводности и высокой гигроскопичности.





Источник:
Категория: ИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ | Добавил: Энергомаш (25.02.2009) | Автор: РЕМОНТ ЭЛЕКТРОДВИГАТЕЛЕЙ.
Просмотров: 11919 | | Рейтинг: 5.0/2|

 
 


РЕМОНТ ЭЛЕКТРОДВИГАТЕЛЕЙ [41]
Устройство, характеристики и ремонт электродвигателей. Стандарты и правила.
НЕИСПРАВНОСТИ ЭЛЕКТРОДВИГАТЕЛЕЙ [17]
Причины неисправностей электродвигателей, методы определения и устранения.
ИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ [19]
Электроизоляционные материалы для ремонта электродвигателя.
ПРОПИТКА ОБМОТОК [8]
Типы и технические характеристики лаков для пропитки обмоток.
ОБМОТОЧНЫЙ ПРОВОД [3]
Характеристики обмоточных проводов для ремонта электродвигателей.
ПОДШИПНИКОВЫЕ УЗЛЫ [11]
Подшипники и подшипниковые узлы электродвигателей.
ТЕХНОЛОГИЯ РЕМОНТА ЭЛЕКТРОДВИГАТЕЛЕЙ [82]
Технологический процесс капитального ремонта электродвигателей.
ИСПЫТАНИЯ ЭЛЕКТРОДВИГАТЕЛЕЙ [22]
Измерение параметров и методы испытания электродвигателя.
ЗАЩИТА ЭЛЕКТРОДВИГАТЕЛЯ [8]
Внутренняя и внешняя защита электродвигателя. Терморезисторы и датчики.
ОБОРУДОВАНИЕ ДЛЯ РЕМОНТА ЭЛЕКТРОДВИГАТЕЛЕЙ [6]
Необходимое оборудование и инструменты для ремонта электродвигателя.
СХЕМЫ ОБМОТОК [39]
Основные схемы обмоток электродвигателя. Способы соединения обмоток звездой и треугольником.
ОБМОТОЧНЫЕ ДАННЫЕ ЭЛЕКТРОДВИГАТЕЛЕЙ [48]
Таблицы обмоточных данных электродвигателей.
НИЗКОВОЛЬТНОЕ ОБОРУДОВАНИЕ [84]
НОВОСТИ ТЕХНОЛОГИЙ [74]



 

Copyright MyCorp © 2024
Яндекс.Метрика